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Abstract —Stripline and microstrip filters at X-band were
designed and fabricated using low- and high-temperature super-
conductors in quarter-wave, parallel-coupled section configura-
tions. Low-temperature superconducting niobium thin films,
deposited on single-crystal sapphire, were used to build two
six-pole stripline filters with adjacent passbands and approxi-
mately 3 dB crossovers and 1.2% bandwidth. Four- and six-pole
microstrip filters were made with in siru epitaxial YBa,Cu;0,
(YBCO) films on LaAlO; substrates. All the YBCO filters showed
77 K passbands with clean skirts and high out-of-band rejec-
tion. The YBCO six-pole filters were made after some initial
technology developments, together with a reasonably high degree
of repeatability, were established with the fabrication of eight
working four-pole filters. The six-pole filters had adjacent pass-
bands with —28 dB crossovers and 1.5% bandwidth. The results
obtained show the potential of high-temperature superconduc-
tors for filters with narrow bandwidths and low insertion losses.
Furthermore, they show a very rapid rate of development of
superconducting filter technology, leading to system demonstra-
tions and subsequent production in the near future.

I. INTRODUCTION

IGH-TEMPERATURE superconductors (HTS's)

are likely to find their first systems applications in
passive microwave devices. Among these, planar band-pass
filters are particularly attractive wherever a portion of the
RF frequency spectrum is required to be partitioned into
smaller bands. Wide-band radar and communication sys-
tems generally do not use their entire bandwidth at once.
They typically frequency-hop with a much narrower band-
width signal. While on a specific frequency, it is desirable
that the rest of the available bandwidth be filtered out at
the input to the receiver. The required filtering can be
performed with a switched filter bank or a tunable filter
that will track the hopping transmitter signal. Electronic
warfare receivers use preselection to break the complete
RF band into several bands, each with a width equal to
that of the IF. Since preselection is at the very front end
of the receiver it must have very low loss so as not to
contribute significantly to the receiver noise figure.
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Low-loss and narrow-bandwidth (0.5-3%) switched fil-
ter banks are available using such technologies as wave-
guide and multimode coupled dielectric resonators, which
result in the filter bank having a very large size. In
satellite communications, for example, where filter banks
are also needed. the problem of size and weight becomes
of primary importance.

Microstrip filters. small in size but too lossy for this
application when using normal conductors at room tem-
perature. can provide the solution when using HTS’s. In
this paper we report the design, fabrication, and testing of
X-band low- and high-temperature superconducting fil-
ters. Our results show a rapid rate of technology develop-
ment, demonstrating the potential for low-loss, narrow-
bandwidth filter banks requiring relatively inexpensive
cooling to 77 K.

II. Low-TEMPERATURE SUPERCONDUCTING FILTER
Par AT X-BanD

Before HTS films could be reliably produced in rela-
tively large (e.g., >1.5 cm?) substrates, the design and
fabrication of a microwave filter pair with contiguous
passbands were undertaken using low-temperature super-
conducting (LTS) niobium thin films on sapphire sub-
strates. The goal of this effort was to establish the major
technological difficulties in producing very low loss mi-
crowave devices which were to operate at cryogenic tem-
peratures. It must be kept in mind that most of the
thermal and mechanical problems associated with cooling
a device are the same at 77 K as they are below this
temperature (4.2 K in the case of the LTS filters built).
Furthermore. the use of sputtered niobium thin films for
this project was viewed as risk free from the materials
standpoint. as we could readily obtain films of good
quality on relatively large (2.54 ¢m by 2.54 cm) single-
crystal sapphire substrates.

The approach taken was to design a pair of parallel-
coupled stripline resonator filters at X band. The filters
were designed taking into consideration the fact that
sapphire is an anisotropic dielectric material [1]. Nb films
were deposited onto rectangular sapphire substrates (2.54
cm by 1.27 cm by 0.038 cm) cut with the ¢ axis parallel to
their long dimension. The parallel-coupled resonators
were then defined photolithographically in the c-axis di-
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Fig. 1. Photograph of the interior of one of the low-temperature
superconducting filters. Sputtered niobium thin films on single-crystal
sapphire substrates were used. Operation temperature was 4.2 K (liquid
helium).

rection. Thus, only the a-axis (ordinary) dielectric con-
stant (e, =9.4) needed to be taken into account in the
electrical design of the filter. The reason is that the
electric fields were mostly confined to planes perpendicu-
lar to the ¢ axis. . \

One advantage of our sputtered Nb films is that they
could be deposited on both sides of a substrate. The
quality of one of the films was degraded in the process,

however. After a film was deposited the substrate had to

be taken out of the sputtering chamber in order to turn it
over to coat the back side. When the substrate was heated
again for growth of the second film, a decomposition of
the NbO layer (= 5 nm thick) that forms on the surface
of the first film occurs. The oxygen then diffuses into this
film, contaminating it. A way to prevent film degradation
is to devise a mechanism to turn the substrate over inside
the chamber, without breaking vacuum. We did not have
this capability in place. Nevertheless, the degraded film
was used as a ground plane, where current concentration
is lower and its contribution to the total loss is several
times smaller than that of the strips. This allowed us to
have a relatively simple package configuration for the
stripline filter.

Fig. 1 is a photograph of one of the units made. The
substrates were given the shape shown in order for the
structure to behave like a waveguide below cutoff at the
two ports of the filter. This resulting in a large out-of-band
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Fig. 2. Return and insertion loss response at 4.2 K for one of the
low-temperature superconducting filters.
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Fig. 3. Superimposed passbands at 4.2 K for‘ the low-temperature
superconducting filter pair.

rejection, as can be seen in the passband shown in Fig. 2
for the lower frequency filter. The figure also shows the
return losses at both ports. Fig. 3 shows both passbands

together, with crossovers at approximately 3 dB. The two

filters were tested using a power divider outside the
Dewar. : -

It was established from the outset that one of the main
difficulties in this work was the packaging. Not only
electrical but also thermal and mechanical considerations
were important. The devices had to maintain their physi-
cal integrity in the face of repeated thermal cycling.
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Therefore considerable effort was spent in developing a
suitable packaging technique.

III. HTS FiLtER—MATERIALS AND PROCESSING
A. Film Deposition and Processing

Four- and six-pole filters using microstrip parallel-cou-
pled resonators were fabricated in HTS material. The
high-temperature superconducting films used in this work
were YBa,Cu;0, (YBCO) grown on LaAlO, substrates
by off-axis magnetron sputtering. The target was a pressed
and sintered disk of YBa,Cu;O, approximately 5 cm in
diameter. The films grown were epitaxial with the crystal-
lographic ¢ axis oriented perpendicular to the plane of
the film. The properties of these films are comparable to
those of the best films produced by laser ablation, by
coevaporation in activated oxygen, and by other sputter-
ing techniques. In addition, uniform film properties across
a 5-cm-diameter substrate holder have been demon-
strated [2], [3]. Film uniformity over large areas is of great
importance for integration of filters into filter banks on a
single wafer.

The YBCO was patterned by conventional contact pho-
tolithography and wet etching with 15:1 H,0:H,PO,
used as an etchant. Contact to the HTS filter was made
through 200-nm-thick gold contact pads overlaying the 50
Q input and output lines of the filter. These contact pads
were patterned by lift-off from a gold layer deposited by
evaporation. Annealing in one atmosphere of dry oxygen
at 650°C ensured a low-resistance contact between the
gold and the YBCO microstrip line [4].

B. Film and Substrate Electrical Characteristics

Of interest in the work presented here is the surface
resistance of our films and the relative dielectric constant,
€,, and loss factor (tan 6) of the substrate. From parallel-
plate resonator measurements performed using the tech-
nique introduced by Taber [5], the typical (not the lowest)
surface resistance of our films extrapolated to 10 GHz,
assuming an f? dependence, is about 0.5 m€). This value
was not corrected for film thickness. Our films are typi-
cally 500 nm thick, although some of the earlier four-pole
filters reported on below were fabricated using thinner
films. Films with a thickness comparable to the penetra-
tion depth (about 200 nm at 77 K for YBCO) will show an
equivalent surface resistance that, although higher than
the true R, of the material itself, is the usable loss
parameter for the film. The R, value quoted here, there-
fore, is a conservative estimate of the quality of our films.
It agrees well with literature reports [6].

The tané of LaAlO,; was measured using a YBCO
microstrip resonator with a fundamental resonance at 650
MHz. The resonator was designed so that the conductor
loss contribution to the unloaded Q was low. Besides
resonating at a low frequency, the line was relatively wide
(0.05 cm) and its distance to the ground plane relatively
large (0.087 c¢cm). The characteristic impedance was ap-
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Fig. 4. Geometry of the four-pole parallel-coupled resonator mi-
crostrip filter. The dimensions of the substrate are given as an indication
of the scale of the drawing.

proximately 30 €. The measured unloaded Q of the
resonator at the fundamental harmonic and 77 K was
25000, corresponding to tand = 4x 107>, This value is
conservative since the effect of conductor loss was ne-
glected. It is in agreement with literature reports [7] of
similar measurements. It was assumed that the dielectric
loss factor was constant through the X band. This has not
been confirmed experimentally.

Since accurate design of the filter center frequency and
the bandwidth require that e, be determined to high
precision, the real part of the permittivity, €,, was not
determined from the same experiment as tan 8. The rea-
son was that the 650 MHz resonator used was a meander
microstrip line with an electrical length significantly dif-
ferent from that of a straight line of the same physical
length. Radial bends, a certain amount of parasitic cou-
pling between arms, and the effect of the end termina-
tions all contributed to this difference. Modeling and
corrections for these effects would have detracted from
the precision required for filter design. Rather, the value
of €, =24.5 published in some early work [8] was used to
design two- and four-pole filters for the initial stages of
our HTS work. From deviations of the measured center
frequencies from design for several filters, a value for ¢,
of 23.4 at 77 K was found, which yielded results close to
design for the six-pole filters discussed below. This value
of €, is in agreement with that in [9], obtained from
microstrip resonator measurements. In [9], however, the
technique used to measure the tand of LaAlO; was
rather indirect and yielded a conservative value (5x10~*
at 77 K). As explained above, a more direct measurement
using a high-Q resonator with low conduction losses vields
a tan 6 value one order of magnitude lower.

IV. HTS Four-Pore FILTER DESIGN AND FABRICATION

Four-pole, quarter-wave, parallel-coupled line mi-
crostrip filters were built with both normal and supercon-
ductor ground planes. The filter geometry is shown in Fig.
4. This filter has five coupled sections. Because it was not
yet possible for us to deposit in situ epitaxial films on
both sides of a substrate, the filter housing was designed
to accommodate a separate ground plane substrate. Even
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Fig. 5. Passbands at 77 K (liquid nitrogen) for eight four-pole high-temperature superconducting filters, showing a high
degree of reproducibility in shape and out-of-band rejection. Fig. 5(f) is for a superconducting ground plane. All the other

filters had a normal conductor as a ground plane.

though this approach tends to result in detrimental air
gaps between the substrate with the patterned supercon-
ductor and the ground plane, the fabrication scheme
chosen allowed us to explore the full potential of HTS
materials in high-performance microwave filters.

A microstrip configuration was chosen over stripline in
order to limit the number of substrates per filter to 2
when including a HTS ground plane. Microstrip has the
further advantage that a housing designed to be a cutoff
waveguide has larger dimensions than if stripline were
used, allowing the use of rectangular substrates without
the narrowed-down sections at the input and output ports
shown in Fig. 1. This is especially important in HTS film
work, since LaAlQ; substrates have a high dielectric
constant (e, = 24). As mentioned previously, a housing

with cutoff waveguide dimensions is necessary for obtain-
ing low input-output electromagnetic coupling and,
hence, a large out-of-band rejection.

Of primary importance to the success of these devices
is the package. Although there are obvious differences
between housing microstrip and stripline circuits, key
techniques first demonstrated in the LTS stripline case
discussed above were adapted and perfected for use with
the microstrip HTS filters. Discussions of packaging con-
siderations and microwave measurements on these four-
pole filters have been presented elsewhere [10], [11]. Fig.
5 shows the passbands of eight of these filters, taken at 77
K, showing the degree of repeatability we obtained. Fig.
5(f) corresponds to a filter with a superconducting ground
plane. The rest are for filters with normally conducting
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TABLE 1
Hicu-TEMPERATURE SUPERCONDUCTING FILTER PAIR AT X-BaND:
DEsiGN CHARACTERISTICS

Chebychev response

Microstrip

Coupled quarter-wave sections: 7
Poles: 6

€, =234

tand=4x10"°

h = 0.0432 cm (microstrip-to-ground-plane distance)
h,=0.635 cm (cover height)

Low-Frequency High-Frequency

Filter Filter
Center frequency (GHz) 9.705 9.925
Ripple bandwidth (%) 1.55 1.51
Passband ripple (dB) 0.10 0.10
Lower ripple band edge (GHz) 9.63 9.85
Higher ripple band edge (GHz) 9.78 10.00
26 dB rejection at (GHz) 9.595, 9.815 9.815, 10.035

ground planes. The center frequency and the bandwidth
were higher than the design values for all of these filters,
9.5 GHz and 190 MHz, respectively [11]. As can be seen
in Fig. 5, there was also considerable variation in center
frequency among the filters. This was attributed to air
gaps between the ground plane and the bottom of the
substrate with the patterned filter. On the other hand, the
passbands look very clean, with a high out-of-band rejec-
tion and a reasonably flat top. Other details of the electri-
cal characteristics of these filters were discussed in [11].
The insertion loss for the filter with HTS ground plane
(Fig. 5(f)) was not better than the others in the figure
because the losses were limited by the mismatch losses at
both ports [12].

V. HTS Six-PoLe FILTER PaIrR AT X BAND

A six-pole Chebychev filter pair with a design goal
similar to that for the LTS filter pair was fabricated in
HTS. These filters were made using essentially the same
techniques developed for the four-pole ones. A major
difference, however, was the ground plane, which was a
normal conductor (gold) directly deposited on the back of
the LaAlOj; substrate supporting the patterned HTS film.
The filters were designed to have adjacent passbands.
The design parameters are listed in Table I. As discussed
previously, a relative dielectric constant of 23.4 was used
for the LaAlO; substrate in the design of these filters.
The filter geometry was essentially the same as that
shown in Fig. 4 but with seven coupled sections instead of
five. Likewise, the housings were somewhat larger than
those for the four-pole filters but otherwise identical to
them [10], [11]. Fig. 6 shows the passbands for the filter
pair. Notice that in this case the experimental results
were much closer to the design goals than for the four-pole
filters. The center frequencies for both filters were about
30 MHz lower than the designed value. The crossovers
were measured at —28 dB, only 2 dB lower than the
design goal of —26 dB. Fig. 7 shows the higher frequency
filter passband superimposed to the design objective, indi-
cating the bandwidth and skirt selectivity requirements,
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Fig. 6. Superimposed passbands at 77 K for the six-pole high-tempera-
ture superconducting filter pair.

shifted downward in frequency by 31.5 MHz in order for
it to lie on the measured response. As can be seen, the
upper skirt meets the design very closely, but the fit of the
lower skirt is not as close. The lower frequency filter (Fig.
6) had a more rounded passband than was desired. Over-
all agreement with design was very good for both filters,
however.

Fig. 7 also shows the return losses for both ports of the
higher frequency filter. These are higher than those ob-
tained for the four-pole filters [11], which is attributed
both to the use of a ground plane directly deposited on
the back of the HTS substrate and to improved assembly
techniques from the experience gained with the four-pole
filters.

V1. CoNcLUSIONS

Low-loss, narrow-band microstrip filters can become a
reality using superconductors. Their potential has been
demonstrated and the techniques developed so far show
that results reasonably close to design goals can be ob-
tained repeatedly. Several issues must still be addressed
before system evaluations and production can become
possible. In particular, double-sided deposition of in situ
epitaxial films is being developed in order to eliminate air
gaps and complicated packaging. This improved configu-
ration will be tested soon. Techniques requiring post-
deposition annealing are already being used successfully
for this purpose [13].

An important consideration for superconducting filters
is obtaining a good impedance match at the input and
output ports. The reason is that conductor losses are now
small enough to be of the same order as matching losses.
This problem has been discussed at greater length in [12].
This is a critical issue and great care must be devoted to
all aspects of the fabrication of superconducting filters to
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Fig. 7. Return and insertion loss response at 77 K for one of the
high-temperature superconducting six-pole microstrip filters. A normal-
metal ground plane was used for this filter. Superimposed to the
passband is the design objective shifted down by 31.5 MHz to lie on the
measured response.

achieve the return losses required (=20 dB) in order to
produce as-designed filters with 1% bandwidth or less.
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